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Upper Bound on Cell Size for Moment-Method
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Abstract—When pulse fnnctions are used in moment-method solu-

tions, failure to allow for variation of the field within each cell limits

the maximum usable electrical size of the cells. Appreciable error is
expected for I k 11>2 in one or two dimensions and I k 11> fi in the

three-dimensional problem where 1 is the side of a cell and k is the
propagation constant in the material

I. INTRODUCTION

I N ELECTROMAGNETICS, discretization for transfor-

mation of an integral equation to a matrix equation is

often accomplished using pulse functions as a basis [1]-[4].

When using pulse functions, the scatterer is partitioned into

a number of cells N, where N is large enough that complex

permittivity and the complex time-independent electric field

may be assumed constant within each subvolunne.

In a given problem, it is common to estimate the maxi-

mum usable cell size and try several values of N to test for

apparent convergence of the resulting solutions [5]. An

approximate upper bound on cell size may be found from

observation of the oscillatory nature of the kernel in the

integral equation, which suggests that the cell size not exceed

AO/5, where 10 is the free space wavelength [6]. It is the object

of this paper to establish a significantly tighter upper bound

on cell size in moment-method solutions with scatterers

when pulse functions are used as the basis.

II. EVALUATION OF THE BOUND ON CELL SIZE

Consider a source-free region of space in which the

dielectric properties are homogeneous, linear, and isotropic.

All fields are assumed to have exp (jot) time variation. We

may set up a local Cartesian coordinate system at any point

in the region and require that the homogeneous wave

equation be satisfied:

V2~ + k2~ = O. (1)

Six points are chosen a distance S from the origin on halves

of each of the three ~ocal axes. ~i will represent the value of

one component of E, say E., at the ith point. Let

(5 J=fi-fo (2)

where ~. is the value of J% at the origin.
If S is small enough so that there is little variation in EX,
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the difference equation approximation of (1) may be used

with the result

The greatest (in absolute value) of the 6X must satisfy

(3)

(4)

When (4) predicts large variations, we cannot expect the

prediction to be quantitative, but we may safely infer that

substantial variation of the fields will always occur within

the volume of a cell containing the six points if the predicted

fractional variation has a value of, say, one-half, for which

lklS=~. (5)

Restricting our attention to cubical cells, we note that the

smallest cube containing the six points has side

1=/3s (6)

so large variations in the fields are expected for

Ikll>fi. (7)

The corresponding result for square cells with side 1in the

two-dimensional problem or linear cells of length 1 in the

one-dimensional problem is

lkll>2. (8)

In an efficient moment-method solution such as in [1]-[4],

variation of the Green’s function within each cell is closely

approximated so that the primary source of error is imper-

fect representation of the fields by the basis. If pulse func-

tions are used, it is assumed that the fields are constant

within each cell. Then appreciable aror is expected if (8) is

satisfied in a one- or two-dimensional problem or if (7) is

satisfied in a three-dimensional problem. The smoothing

property of the integral operator causes the error in the
solution to be somewhat less than may be anticipated for a

simple basis, but we may still expect that (7) and (8) give a

reasonable upper bound for cell size.

III. EXAMPLES

The bound of(7) is tighter than that found from consider-

ation of the oscillatory nature of the kernel for scatterers

having a relative permittivity E, such that I e, I s 3.8. In

order to illustrate this, a couple of biological applications

using dielectric properties of muscle [7] will be considered
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TABLE I
VALUES OFTHE INDUCED ELECTRICFIELD AT THE

CENTEROF MUSCLE CUBES AT 2450 MHz

AS GIVEN IN [4]: &l /eO = 47.0, 0 = 2.21 mho/m

Cube one 1 ~ 6.37 0.144 0.0789

a=~ 27 1/3 2.12 0.0481 0.0922

Cube two 1 1/4 1.59 0.0361 0.0592

a = A14 27 1/12 0.531 0.0120 0.0556

TABLE II
ERRORSIN THE AVERAGE SPECIFIC ABSORBED POWER

DENSITY FOR AN INFINITE CYLINDER OF MUSCLE

WITH A 20- BY 20-cm CROSS SECTION AT 100 MHz:

S1/&o = 68.0, ~ = 0.890 mho/m

Number

of Cells

4

9

16

25

.tl Ae

0.367

0.245

0.183

0.147

Ik\t

2.76

1.84

1.38

1.11

.LIio

0.0334

0.0222

0.0167

0.0133

Error

-34. 90%’

-16.40%

-8. 64%

-4. 96%

since the complex permittivity has a relatively large

magnitude.

Table I uses the results given in [4] for two muscle cubes

having sides of a = 1. and 1,/4, respectively, at 2450 MHz,

where J, is the wavelength in the material. No analytical

solution is available for comparison, but variation of the

calculated electric field with cell size suggests that there is

significant error in the single-cell solution for the larger

muscle cube. The small values of 1/10 suggest that the

oscillatory nature of the kernel should contribute little error

in the four calculations. Values of I k 11and (7) suggest that

significant error should be found using one cell with the

larger cube, as is observed.

For the second example, Richmond’s method [1] was used

to calculate the average specific absorbed power density in

an infinite cylinder of muscle with a 20- x 20-cm square

cross section. A plane wave at 100 MHz with a power density

of 1 mW/cm2 incident normal to one of the four congruent

flat surfaces was used for TM excitation. The average

specific absorbed power density found using 100 cells is

0.05534 mW/cm3, which was used as a standard, differing by

0.39 percent from the value found using 81 cells. Table II

gives the results found using fewer cells. Note that significant

error is encountered when (8) is satisfied even though 1/10 is

so small that the oscillatory nature of the kernel contributes

negligible error.

IV. CONCLUSIONS

When pulse functions are used in moment-method solu-

tions, failure to allow for variation of the field within each

cell limits the maximum usable electrical size of the cells.

Appreciable error is expected for I k] 1>2 in one or two

dimensions, and Ik 11> ~ in three-dimensional problems,
where 1is the side of a cell. The new upper bounds for cell size

are significantly tighter than those found from the oscilla-

tory nature of the kernel if the scatterer has a large relative

permittivity. The new upper bounds have been
demonstrated with two- and three-dimensional solutions.
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