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Upper Bound on Cell Size for Moment-Method
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Abstract—When pulse functions are used in moment-method solu-
tions, failure to allow for variation of the field within each cell limits
the maximum usable electrical size of the cells. Appreciable error is
expected for |k|I > 2in one or two dimensions and |k |! > ./6in the
three-dimensional problem where [ is the side of a cell and k is the
propagation constant in the material.

I. INTRODUCTION

N ELECTROMAGNETICS, discretization for transfor-

mation of an integral equation to a matrix equation is
often accomplished using pulse functions as a basis [1]-[4].
When using pulse functions, the scatterer is partitioned into
a number of cells N, where N is large enough that complex
permittivity and the complex time-independent electric field
may be assumed constant within each subvolume.

In a given problem, it is common to estimate the maxi-
mum usable cell size and try several values of N to test for
apparent convergence of the resulting solutions [5]. An
approximate upper bound on cell size may be found from
observation of the oscillatory nature of the kernel in the
integral equation, which suggests that the cell size not exceed
Ao /5, where 4, is the free space wavelength [6]. Itis the object
of this paper to establish a significantly tighter upper bound
on cell size in moment-method solutions with scatterers
when pulse functions are used as the basis.

11. EVALUATION OF THE BOUND ON CELL SIZE

Consider a source-free region of space in which the
dielectric properties are homogeneous, linear, and isotropic.
All fields are assumed to have exp (jwt) time variation. We
may set up a local Cartesian coordinate system at any point
in the region and require that the homogeneous wave
equation be satisfied:

V2E + k*E = 0. (1)

Six points are chosen a distance S from the origin on halves
of each of the three local axes. f; will represent the value of
one component of E, say E,, at the ith point. Let

ofi=fi—rfo (2)

where f, is the value of E, at the origin.
If S is small enough so that there is little variation in E_,
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the difference equation approximation of (1) may be used

with the result

6
Y of; + k3S%f, = 0. (3)
i=1
The greatest (in absolute value) of the 6f; must satisfy
|9fi| _ |K[*S?
> 4
I @

When (4) predicts large variations, we cannot expect the
prediction to be quantitative, but we may safely infer that
substantial variation of the fields will always occur within
the volume of a cell containing the six pointsif the predicted
fractional variation has a value of, say, one-half, for which

kS =/3 (5)

Restricting our attention to cubical cells, we note that the
smallest cube containing the six points has side

1=./28 (6)

so large variations in the fields are expected for

|k|l>./6. (7)
The corresponding result for square cells with side [ in the

two-dimensional problem or linear cells of length [in the
one-dimensional problem is

k|1 =2 ®)

In an efficient moment-method solution such as in [1]-[4],
variation of the Green’s function within each cell is closely
approximated so that the primary source of error is imper-
fect representation of the fields by the basis. If pulse func-
tions are used, it is assumed that the fields are constant
within each cell. Then appreciable crror is expected if (8)is
satisfied in a one- or two-dimensional problem or if (7) is
satisfied in a three-dimensional problem. The smoothing
property of the integral operator causes the error in the
solution to be somewhat less than may be anticipated for a
simple basis, but we may still expect that (7) and (8) give a
reasonable upper bound for cell size.

1. ExAMPLES

The bound of (7) is tighter than that found from consider-
ation of the oscillatory nature of the kernel for scatterers
having a relative permittivity ¢, such that |¢,| > 3.8. In
order to illustrate this, a couple of biological applications
using dielectric properties of muscle [7] will be considered
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TABLE 1
VALUES OF THE INDUCED ELECTRIC FIELD AT THE
CENTER OF MuscLE CUBES AT 2450 MHz
A8 GIVEN IN [4]: ¢, /e, = 47.0, 6 = 2.21 mho/m

Number [El Center
of Cells | MAc | IKl2 | anyg V/m)
Cube one 1 2 6.37 0.144 0.0789
a =2 27 1/3 2.12 0.0481 0.0922
Cube two 1 1/4 1.59 0.0361 0.0592
a = N4 27 1/12 0.531 0.0120 0.0556
TABLE II

ERRORS IN THE AVERAGE SPECIFIC ABSORBED POWER
DENSITY FOR AN INFINITE CYLINDER OF MUSCLE
WITH A 20- BY 20-cm CROSS SECTION AT 100 MHz:
£, /g = 68.0, ¢ = 0.890 mho/m

Number
E
of Cells /% [k]e R,/Ao rror
4 0.367 2.76 0.0334 ~34.90%
2 0.245 1.84 0.0222 -16.40%
16 0.183 1.38 0.0167 -8.64%
25 0.147 1.1t 0.0133 ~4.96%

since the complex permittivity has a relatively large
magnitude. ,

Table I uses the results given in [4] for two muscle cubes
having sides of a = A, and 4,/4, respectively, at 2450 MHz,
where A, is the wavelength in the material. No analytical
solution is available for comparison, but variation of the
calculated electric field with cell size suggests that there is
significant error in the single-cell solution for the larger
muscle cube. The small values of I/1, suggest that the
oscillatory nature of the kernel should contribute little error
in the four calculations. Values of |k |/ and (7) suggest that
significant error should be found using one cell with the
larger cube, as is observed. A

For the second example, Richmond’s method [1] was used

to calculate the average specific absorbed power density in
an infinite cylinder of muscle with a 20- x 20-cm square
cross section. A plane wave at 100 MHz with a power density
of 1 mW/cm? incident normal to one of the four congruent
flat surfaces was used for TM excitation. The average
specific absorbed power density found using 100 cells is
0.05534 mW/cm?, which was used as a standard, differing by
0.39 percent from the value found using 81 cells. Table II
gives the results found using fewer cells. Note that significant
error is encountered when (8) is satisfied even though /A, is
so small that the oscillatory nature of the kernel contributes
negligible error.

IV. ConcLusioNs

When pulse functions are used in moment-method solu-
tions, failure to allow for variation of the field within each
cell limits the maximum usable electrical size of the cells.
Appreciable error is expected for |k |1 >2 in one or two
dimensions, and |k|l > \/Ein three-dimensional problems,
where lis the side of a cell. The new upper bounds for cell size
are significantly tighter than those found from the oscilla-
tory nature of the kernel if the scatterer has a large relative
permittivity. The new upper bounds have been
demonstrated with two- and three-dimensional solutions.
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